Linear Algebra

Norm Space

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu



mailto:rabiee@sharif.edu
mailto:maryam.ramezani@sharif.edu

Table of contents

01 02
1-normand 2 -
P-norm norm
04
1
> -horm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

03

c -norm



O1

P-norm



Vector Norms

QO P-norm

1
lxlly = Clxa [P + lx2 P + o 4 | [P)P

subjecttop = 1

3 Whatis the shape of ||x|l, =17?
O Properties?



Norm

Definition
A function f: R®" — R is a norm if
1 f(x) =0, f(x) =0 <= x =0 (positivity)
2. f(ax) = |a|f(x), Va € R (homogeneity)
3 fx+vy) < f(x)+ f(y) (triangle inequality)
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1 —norm and 2 -norm
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Vector Norms

a 1-norm(ly):
xlls = Cleal + 2l + o+ |xn )

0  Whatis the shape of ||x]|[{ =17

O The distance between two vectors under the [; norm is also

referred to as the Manhattan Distance.
O Properties?

Example

[, distance between (0,1) and (1,0)?

4




Norm Derivations

O Square of [,
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dllx|l5
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dllx||3
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Norm Derivations
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Norm Comparisons

Square [, norm [; norm
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L1 and L2 Comparisons :
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L1 and L2 Comparisons

0 Robustness is defined as resistance to outliers in a dataset. The
more able a model is to ignore extreme values in the data, the more
robust it is.

0 Stability is defined as resistance to horizontal adjustments. This is
the perpendicular opposite of robustness.

0 Computational difficulty

O Sparsity



Why is [;supposed to lead to sparsity than
[,?

. xI-

min|[x||1 or 2, joa

AT =

\ subjectto Ax = b N
0

\‘\
llw|ly X ||“‘|-’/— >
<>\;l \/ \xl

l, reqularization

[, reqularization
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Vector Norms

Q oco-norm(ly,)(Max norm):

lo = max(|xq], |x5], ..., |2, ])

0 What is the shape of |x|, =17
O Properties?



- =-norm



O

Vector Norms

O l-norm(ll)
2 2

O What is the shape of |x|1 = 17
2

O Properties?
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Vector Norms

O-norm(ly): .
n a n

Ixllo = lim 1zl = (Zw) = > 1w xD
k=1 k=1

O-norm, defined as the number of non-zero elements in a vector, is
an ideal quantity for feature selection. However, minimization of 0-norm
is generally regarded as a combinatorially difficult optimization

lxllp = w01



Vector Norms

d Is O-norm a valid norm?

0  Whatis the shape of |[x||, = 17

Example

[, distance between (0,0) and (0,5)7
[, distance between (1,1) and (2, 2)?
- (username, password)



Class Activity

[, distance between (0,0) and (0,5)?
[, distance between (1,1) and (2,2)?
) (username, password)

O @gm

Or go to the below link
https://forms.gle/xFHSDKJDg1KoL4Kx6

Timer: (2:30 minutes)
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Vector Norms

Examples

= [, distance between (0,0) and (0,5)?
= [, distance between (1,1) and (2,2)?
= (username, password)

Solution

= 1

= 2
When [, is 0, then we can infer that username and password is a match and we

can authenticate the user.



Vector Norms Shapes




Norms and Convexity

a Forp =11, normis convex

llxlly =1 lIxllz =1 llxll, =1 lIxlleo =1



Convex Function

O A function is convex iff its epigraph is a convex set.
O Epigraph or supergraph

epif = {(z,p) : € R", peR, p > f(z)} CR"™

F((1=0)x@ +0xD) < (1-0)f (xO) +0f (x), v € [0,1]




Convex and Concave Function

g(+) 4 9(-) 4

Convex Concave

¥

second derivative is nonnegative on its entire domain

Vv



Convex Relaxation
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Sparse Applications

0 Alternative viewpoint: We try to find the sparsest solution which
explains our noisy measurements

min||x|[,, subject to ||Ax — b||, < €
X

O Here, the 1,-norm is a shorthand notation for counting the number

of non-zero elements in x.
b X €
+ E

-

nxl] nxm
measurements

r nonzero
entries,
r<<m



O

Sparse Solution

O [y optimization is np-hard.
0 Convex relaxation for solving the problem.

min]lxl; min|lxl,

subject to ||[Ax —b]|, < € subject to ||[Ax — bl|, < €
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L1-L2 norm inequality

Theorem

For all x € R%:
|Ixl], < |lxl|, < Va|lxl|,

Proof

Dl Yl =3t 43 el
i i i i#j



Max norm inequality

Theorem
For all x € R%:
x|, < |lxl|, < d]lxl]

|Ix1| < |lxl], < VdllxI| |

Proof



Conclusion

0 By anormed linear space (briefly normed space) is meant a real
or complex vector space E in which every vector x is associated
with a real number |x|, called its absolute value or norm, in such a
manner that the properties (a’) — (¢’) holds. That is, for any
vectors x,y € E and scalar a we have:

i x| =0
i x| =0iifx=0
i |ax| = |a||x]

. |x+yl < x|+ |yl



Inner product and norm

Solution

Take any inner product (:,-) and define f(x) = +/{(x,x). Then f is a norm.

Proof

Examples

Every inner product gives rise to a norm, but not every norm comes
from an inner product. (Think about norm 2 and norm max)



Entry-wise matrix norms

Definition

1Ally = llvec(A)ll, = (Z > lagl” >

i=1j=1

Special Cases
O Frobenius (Euclidian, Hilbert Schmidt) norm:(p = 2)

IAllF = (ZZ|CLU| ) = \/trace(A*A)

=A='
Q Max norm (p = )
”A”max = rr%?x|aij|

”A”sav = Z|Al]|
LJ

O Sum-absolute-value norm



Frobenius (Euclidian, Hilbert Schmidt) norm

Theorem

QdInvariant under rotations (unitary operations = orthogonal
matrices)

Al = |AU|lr = ||UAI|F
IA + Bllz = llAllZ + |IBllZ + 2(4, B)
14*Allr = ||AA* ||z < ||A|l3

n

IAllz = <zZ|aU| ) \/trace(A*A)

i=1j=1




Frobenius (Euclidian norm)

Theorem

Let by, by, -+, by denote the columns of B. Then

||AB||HS—Z||Ab I? < EnAn 152112 = IANZIIBIIs
Using Cauchy- Schawrtz Inequchtg



Matrix norms induced by vector norms

Definition

14X, )
IAll, = max—=— = max [|AX]|,
=0 [1xllp  Nxlp=1

Theorem

1. [|Ax|| < ||A]||llx]| for all vectors ||x]||

2. For all matrices A, B: ||AB|| < ||A|||| B



Matrix norms induced by vector norms
Definition

1 The norm of a matrix is a real number which is a measure of the magnitude of the
matrix.

1 Norm 1:

n
All, = max (ZI%I)

i=1

n
Alle, = max Zlai,-l
j=1

1 Norm max;

Example

5 —4 2
-1 2 3

-2 1 0



SVD and Norm

O One common definition for the norm of a matrix is the Frobenius

norm.
W= Y Y @

i=1:m j=1:n
0 Frobenius norm can be computed from SVD

IA]l% = Z Y.* where p = min(n, m)
i=1:p

0 So changes to a matrix can be evaluated by looking at changes to
singular values



SVD and Norm

1) Orthogonal matrices, they preserve the Euclidean norm

A
O 2 1l =sp 12l

w20 ||z]l2
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The 2-norm (spectral norm) of a matrix is the greatest distortion of the unit cirele/sphere/hyper-

N O r' m S ‘ o m 0 r' e sphere. It corresponds to the largest singular value (or |eigenvalue| if the matrix is
symmetric/hermitian).

The Forbenius norm is the "diagonal" between all the singular values.
i.e.
|All; =81, ||Allp = /8% +s3+...+8F
(r being the rank of A).
Here's a 2D version of it: 2 is any vector on the unit circle. Az is the deformation of all those

vectors. The length of the red line is the 2-norm (biggest singular value). And the length of the
green line is the Forbenius norm (diagonal).

Ax

— —

2-norm: sl
s2

Forbenius norm: sqrt(s1”2 +s2/2)
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O

References

O Linear Algebra and Its Applications, David C. Lay

0 Introduction to Applied Linear Algebra Vectors, Matrices, and
Least Squares

0 https:,//www.youtube.com/watch?v=76B5cMEZA4Y
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