

Norm Space

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Table of contents

01

P -norm

02

1 -norm and 2 norm 03

∞ -norm

$$\frac{1}{2}$$
 -norm

01

P-norm

P-norm

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$
subject to $p \ge 1$

- □ What is the shape of $||x||_p = 1$?
- Properties?

Norm

Definition

- \square A function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a norm if
 - 1. $f(x) \ge 0$, $f(x) = 0 \Leftrightarrow x = 0$ (positivity)
 - 2. $f(\alpha x) = |\alpha| f(x), \forall \alpha \in \mathbb{R}$ (homogeneity)
 - 3. $f(x + y) \le f(x) + f(y)$ (triangle inequality)

02

1 -norm and 2 -norm

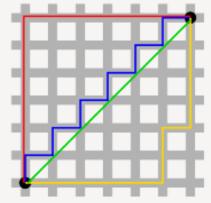
 \square 1-norm(l_1):

$$||x||_1 = (|x_1| + |x_2| + ... + |x_n|)$$

- □ What is the shape of $||x||_1 = 1$?
- lacktriangle The distance between two vectors under the l_1 norm is also referred to as the Manhattan Distance.
- Properties?

Example

 l_1 distance between (0,1) and (1,0)?



Norm Derivations

Square of l_2

$$||x||_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$$

$$\Rightarrow \begin{cases} \frac{d}{d} \\ \frac{d}{d} \end{cases}$$

$$\begin{vmatrix} \frac{d\|x\|_2^2}{dx_1} = \frac{1}{2} \\ \frac{d\|x\|_2^2}{dx_2} = \frac{1}{2} \\ \Rightarrow \end{vmatrix}$$
...

$$\frac{d\|x\|_2^2}{dx_n} = 2x_n$$

Norm Derivations

$$\frac{d||x||_2}{dx_1} = \frac{1}{2} (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2} - 1} \cdot \frac{d}{dx_1} (x_1^2 + x_2^2 + \dots + x_n^2)$$

$$= \frac{1}{2} (x_1^2 + x_2^2 + \dots + x_n^2)^{-\frac{1}{2}} \cdot \frac{d}{dx_1} (x_1^2 + x_2^2 + \dots + x_n^2)$$

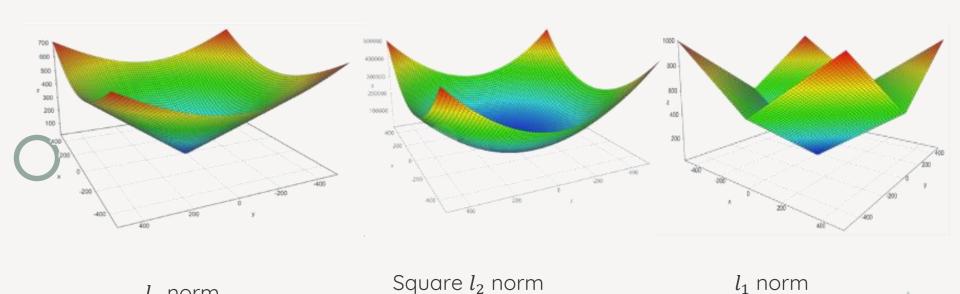
$$= \frac{1}{2} \cdot \frac{1}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}} \cdot \frac{d}{dx_1} (x_1^2 + x_2^2 + \dots + x_n^2)$$

$$= \frac{1}{2} \cdot \frac{1}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}} \cdot 2 \cdot x_1$$

$$= \frac{x_1}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}}$$

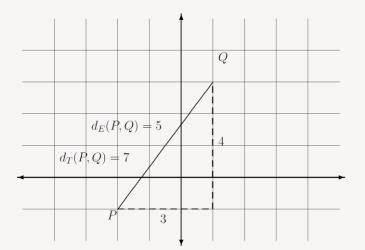
$$\begin{cases} \frac{d\|x\|_2}{dx_1} = \frac{x_1}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}} \\ \frac{d\|x\|_2}{dx_2} = \frac{x_2}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}} \\ & \dots \\ \frac{d\|x\|_2}{dx_n} = \frac{x_n}{(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}} \end{cases}$$

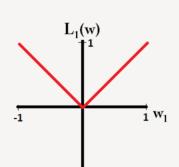
Norm Comparisons

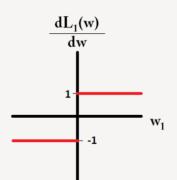


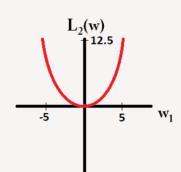
 l_2 norm

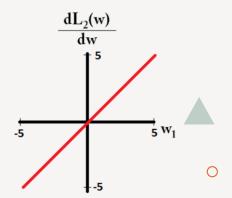
L1 and L2 Comparisons







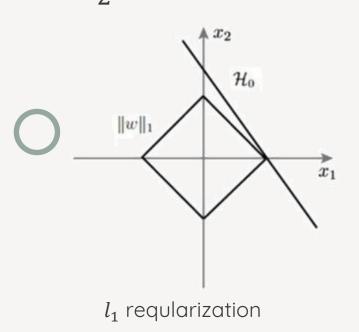




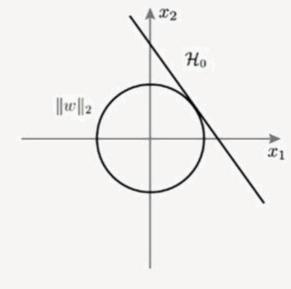
L1 and L2 Comparisons

- Robustness is defined as resistance to outliers in a dataset. The more able a model is to ignore extreme values in the data, the more robust it is.
- Stability is defined as resistance to horizontal adjustments. This is the perpendicular opposite of robustness.
- Computational difficulty
- Sparsity

Why is l_1 supposed to lead to sparsity than l_2 ?



 $\min_{x} ||x||_{1 \text{ or } 2},$ subject to Ax = b



 l_2 regularization

 \square ∞ -norm(l_{∞})(max norm):

$$l_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$$

- What is the shape of $|x|_{\infty} = 1$?
- Properties?

04

$\frac{1}{2}$ -norm

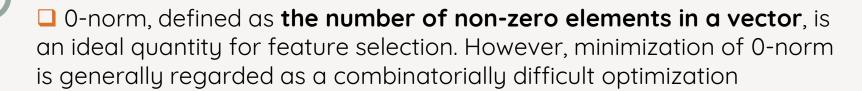
$$\frac{1}{2}\text{-norm}(l_{\frac{1}{2}})$$

- □ What is the shape of $|x|_{\frac{1}{2}} = 1$?
- Properties?

 \mathcal{O}

 \bigcirc 0-norm(l_0):

$$||x||_0 = \lim_{\alpha \to 0^+} ||x||_\alpha = \left(\sum_{k=1}^n |x|^\alpha\right)^{\frac{1}{\alpha}} = \sum_{k=1}^n 1_{(0,\infty)}(|x|)$$



- Is 0-norm a valid norm?
- □ What is the shape of $||x||_0 = 1$?

Example

- \bigcup l_0 distance between (0,0) and (0,5)?
- \square l_0 distance between (1,1) and (2,2)?
- (username, password)

Class Activity

- \square l_0 distance between (0,0) and (0,5)?
- \square l_0 distance between (1,1) and (2,2)?
- ☐ (username, password)

Or go to the below link https://forms.gle/xFHSDKJDq1KoL4Kx6

Timer: (2:30 minutes)

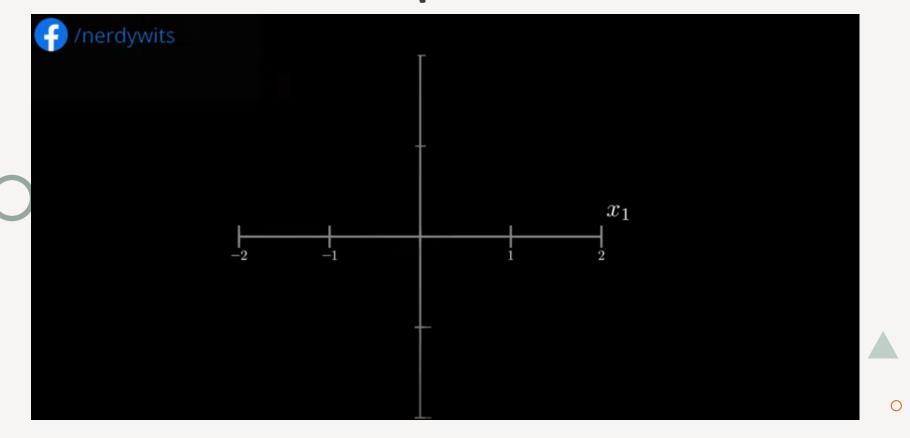
Examples

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1,1) and (2,2)?
- (username, password)

Solution

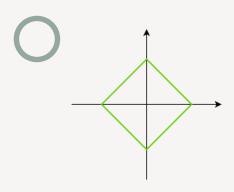
- **•** 1
- **2**
- When l_0 is 0, then we can infer that username and password is a match and we can authenticate the user.

Vector Norms Shapes

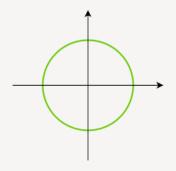


Norms and Convexity

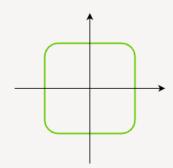
lacksquare For $p\geq 1$, l_p norm is convex



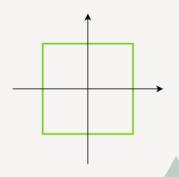
$$||x||_1 = 1$$



$$||x||_2 = 1$$



$$||x||_p = 1$$



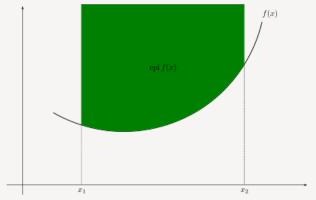
$$||x||_{\infty} = 1$$

Convex Function

- □ A function is convex iff its epigraph is a convex set.
- Epigraph or supergraph

$$\mathrm{epi} f = \{(x,\mu) \,:\, x \in \mathbb{R}^n,\, \mu \in \mathbb{R},\, \mu \geq f(x)\} \subseteq \mathbb{R}^{n+1}$$

$$f((1-\theta)x^{(0)} + \theta x^{(1)}) \le (1-\theta)f(x^{(0)}) + \theta f(x^{(1)}), \quad \forall \theta \in [0,1]$$

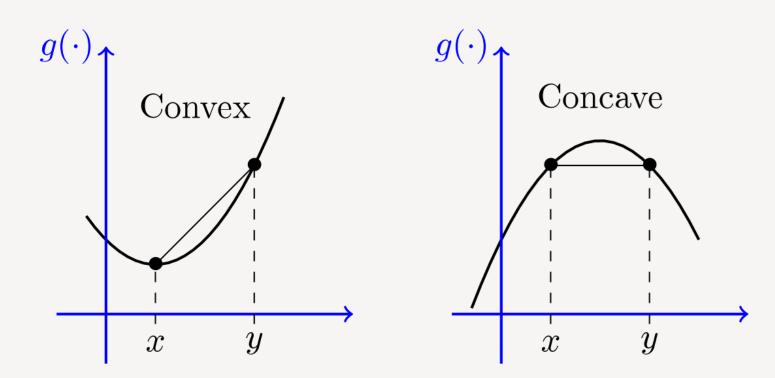


Hamid R. Rabiee & Maryam Ramezani

CE282: Linear Algebra

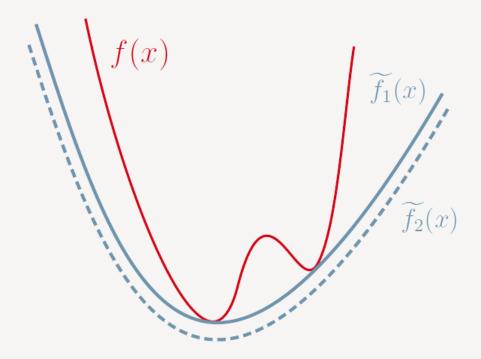
0

Convex and Concave Function



second derivative is nonnegative on its entire domain

Convex Relaxation

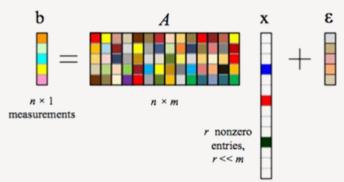


Sparse Applications

Alternative viewpoint: We try to find the sparsest solution which explains our noisy measurements

$$\min_{x} \|x\|_{0}, \quad subject \ to \ \|Ax - b\|_{2} < \epsilon$$

 $lue{}$ Here, the l_0 -norm is a shorthand notation for counting the number of non-zero elements in x.



Sparse Solution

- ullet l_0 optimization is np-hard.
- Convex relaxation for solving the problem.

subject to
$$||Ax - b||_2 < \epsilon$$

$$\min_{1} ||x||_{0}$$

subject to
$$||Ax - b||_2 < \epsilon$$

L1-L2 norm inequality

Theorem

For all $x \in \mathbb{R}^d$:

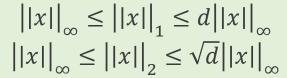
Proof

$$\left| |x| \right|_2 \le \left| |x| \right|_1 \le \sqrt{d} \left| |x| \right|_2$$

Max norm inequality

Theorem

For all $x \in \mathbb{R}^d$:



Proof

Conclusion

By a normed linear space (briefly normed space) is meant a real or complex vector space E in which every vector x is associated with a real number |x|, called its absolute value or norm, in such a manner **that the properties** (a') - (c') holds. That is, for any vectors $x, y \subset E$ and scalar α we have:

$$|x| \ge 0$$

ii.
$$|x| = 0$$
 iif $x = \vec{0}$

iii.
$$|\alpha x| = |\alpha||x|$$

iv.
$$|x+y| \leq |x| + |y|$$

Inner product and norm

Solution

Take any inner product $\langle \cdot, \cdot \rangle$ and define $f(x) = \sqrt{\langle x, x \rangle}$. Then f is a norm.

Examples

Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

Entry-wise matrix norms

Definition

$$||A||_{p,p} = ||vec(A)||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}$$

Special Cases

☐ Frobenius (Euclidian, Hilbert Schmidt) norm:(p = 2)

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \sqrt{trace(A^*A)}$$

 \square Max norm $(p = \infty)$

 $||A||_{max} = \max_{ij} |a_{ij}|$

☐ Sum-absolute-value norm

$$||A||_{sav} = \sum_{i,j} |A_{i,j}|$$

Frobenius (Euclidian, Hilbert Schmidt) norm

Theorem

□Invariant under rotations (unitary operations = orthogonal matrices)

$$||A||_F = ||AU||_F = ||UA||_F$$

$$||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2\langle A, B \rangle$$

$$||A^*A||_F = ||AA^*||_F \le ||A||_F^2$$

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \sqrt{trace(A^*A)}$$

Frobenius (Euclidian norm)

Theorem

Let b_1, b_2, \dots, b_n denote the columns of B. Then

$$||AB||_{HS}^2 = \sum_{i=1}^n ||Ab_i||^2 \le \sum_{i=1}^n ||A||^2 ||b_i||^2 = ||A||^2 ||B||_{HS}^2$$

Using Cauchy-Schawrtz Inequality

 \bigcirc

Matrix norms induced by vector norms

Definition

$$||A||_p = \max_{\vec{x} \neq \vec{0}} \frac{||A\vec{x}||_p}{||\vec{x}||_p} = \max_{||\vec{x}||_p = 1} ||A\vec{x}||_p$$

Theorem

- 1. $||Ax|| \le ||A|| ||x||$ for all vectors ||x||
- 2. For all matrices $A, B: ||AB|| \le ||A|| ||B||$

Matrix norms induced by vector norms

Definition

- ☐ The norm of a matrix is a real number which is a measure of the magnitude of the matrix.
- □ Norm 1:

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$

■ Norm max:

$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$

Example

$$B = \begin{bmatrix} 5 & -4 & 2 \\ -1 & 2 & 3 \\ -2 & 1 & 0 \end{bmatrix}$$

SVD and Norm

One common definition for the norm of a matrix is the Frobenius norm:

$$||A||_F^2 = \sum_{i=1:m} \sum_{j=1:n} a_{ij}^2$$

□ Frobenius norm can be computed from SVD

$$||A||_{\mathrm{F}}^2 = \sum_{i=1:n} \sum_{i=1}^{2} where \ p = \min(n, m)$$

 So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Norm

Theorem

1) Orthogonal matrices, they preserve the Euclidean norm

2)
$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$$

The 2-norm (spectral norm) of a matrix is the greatest distortion of the unit circle/sphere/hyper-Norms Compare sphere. It corresponds to the largest singular value (or |eigenvalue| if the matrix is symmetric/hermitian).

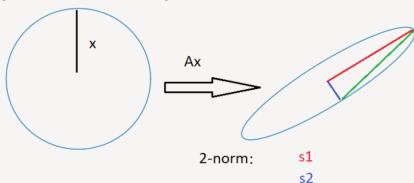
The Forbenius norm is the "diagonal" between all the singular values.

i.e.

$$||A||_2 = s_1$$
 , $||A||_F = \sqrt{s_1^2 + s_2^2 + \ldots + s_r^2}$

(r being the rank of A).

Here's a 2D version of it: x is any vector on the unit circle. Ax is the deformation of all those vectors. The length of the red line is the 2-norm (biggest singular value). And the length of the green line is the Forbenius norm (diagonal).



Forbenius norm: $sqrt(s1^2 + s2^2)$

References

- Linear Algebra and Its Applications, David C. Lay
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- https://www.youtube.com/watch?v=76B5cMEZA4Y

 \bigcirc