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❑ P-norm

❑ What is the shape of 𝑥 𝑝 = 1 ?
❑ Properties?

Vector Norms
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𝑥 𝑝 = 𝑥1
𝑝 + 𝑥2

𝑝 + …+ 𝑥𝑛
𝑝

1
𝑝

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑝 ≥ 1
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Norm
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Definition
❑A function 𝑓:ℝ𝑛 ⟶ℝ is a norm if

1. 𝑓 𝑥 ≥ 0, 𝑓 𝑥 = 0 ⟺ 𝑥 = 0 (positivity)
2. 𝑓 𝛼𝑥 = 𝛼 𝑓 𝑥 , ∀𝛼 ∈ ℝ (homogeneity)
3. 𝑓 𝑥 + 𝑦 ≤ 𝑓 𝑥 + 𝑓 𝑦 (triangle inequality)
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❑ 1-norm(𝑙1):

❑ What is the shape of 𝑥 1 = 1?
❑ The distance between two vectors under the 𝑙1 norm is also 

referred to as the Manhattan Distance.
❑ Properties?

Vector Norms
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𝑥 1 = ( 𝑥1 + 𝑥2 + …+ 𝑥𝑛 )

Example

𝑙1 distance between (0, 1) and (1, 0)?
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Norm Derivations
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❑ Square of 𝑙2

֜

𝑑 𝑥 2
2

𝑑𝑥1
= 2𝑥1

𝑑 𝑥 2
2

𝑑𝑥2
= 2𝑥2

…

𝑑 𝑥 2
2

𝑑𝑥𝑛
= 2𝑥𝑛

𝑥 =

𝑥1
𝑥2

…

𝑥𝑛

𝑥 2
2 = 𝑥1

2 + 𝑥2
2 +⋯+ 𝑥𝑛

2
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Norm Derivations
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❑ 𝑙2
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Norm Comparisons
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𝑙2 norm Square 𝑙2 norm 𝑙1 norm
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L1 and L2 Comparisons
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L1 and L2 Comparisons

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

❑ Robustness is defined as resistance to outliers in a dataset. The 
more able a model is to ignore extreme values in the data, the more 
robust it is.

❑ Stability is defined as resistance to horizontal adjustments. This is 
the perpendicular opposite of robustness.

❑ Computational difficulty
❑ Sparsity
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Why is 𝑙1supposed to lead to sparsity than 
𝑙2?
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𝑙1 reqularization 𝑙2 reqularization

min
𝑥

𝑥 1 𝑜𝑟 2 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏
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Vector Norms
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❑ ∞-norm(𝑙∞)(max norm): 

❑ What is the shape of 𝑥 ∞ = 1?
❑ Properties?

𝑙∞ = max( 𝑥1 , 𝑥2 , … , 𝑥𝑛 )



𝟏

𝟐
-norm
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Vector Norms
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❑

1

2
-norm(𝑙1

2

)

❑ What is the shape of 𝑥 1

2

= 1?

❑ Properties?
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Vector Norms
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❑ 0-norm(𝑙0):

❑ 0-norm, defined as the number of non-zero elements in a vector, is 
an ideal quantity for feature selection. However, minimization of 0-norm 
is generally regarded as a combinatorially difficult optimization

❑ 𝑥 0 = σ𝑥𝑖≠0
1

𝑥 0 = lim
𝛼→0+

𝑥 𝛼 = ෍

𝑘=1

𝑛

𝑥 𝛼

1
𝛼

= ෍

𝑘=1

𝑛

1 0,∞ ( 𝑥 )
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❑ Is 0-norm a valid norm?

❑ What is the shape of 𝑥 0 = 1?

Vector Norms
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Example

❑ 𝑙0 distance between (0, 0) and (0, 5)?
❑ 𝑙0 distance between (1, 1) and (2, 2)?
❑ (username, password)
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Vector Norms
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Class Activity

❑ 𝑙0 distance between (0, 0) and (0, 5)?
❑ 𝑙0 distance between (1, 1) and (2, 2)?
❑ (username, password)

Or go to the below link

https://forms.gle/xFHSDKJDq1KoL4Kx6

Timer: (2:30 minutes)

https://forms.gle/xFHSDKJDq1KoL4Kx6
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Vector Norms
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Examples

▪ 𝑙0 distance between (0, 0) and (0, 5)?
▪ 𝑙0 distance between (1, 1) and (2, 2)?
▪ (username, password)

Solution

▪ 1
▪ 2

▪ When 𝑙0 is 0, then we can infer that username and password is a match and we 

can authenticate the user.
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Vector Norms Shapes
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Norms and Convexity
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❑ For 𝒑 ≥ 𝟏, 𝒍𝒑 norm is convex

𝑥 1 = 1 𝑥 2 = 1 𝑥 𝑝 = 1 𝑥 ∞ = 1
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Convex Function

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

❑ A function is convex iff its epigraph is a convex set.
❑ Epigraph or supergraph
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Convex and Concave Function
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second derivative is nonnegative on its entire domain
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Convex Relaxation
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❑ Alternative viewpoint: We try to find the sparsest solution which 
explains our noisy measurements

❑ Here, the l0-norm is a shorthand notation for counting the number 
of non-zero elements in x.

Sparse Applications
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min
𝑥

𝑥 0 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 − 𝑏 2 < 𝜖
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❑ 𝑙0 optimization is np-hard.
❑ Convex relaxation for solving the problem.

Sparse Solution
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min
1

𝑥 1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 − 𝑏 2 < 𝜖

min
1

𝑥 0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 − 𝑏 2 < 𝜖
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L1-L2 norm inequality 
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Theorem

For all 𝑥 ∈ ℝ𝑑:

𝑥
2
≤ 𝑥

1
≤ 𝑑 𝑥

2

Proof
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Max norm inequality

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

For all 𝑥 ∈ ℝ𝑑:

𝑥
∞
≤ 𝑥

1
≤ 𝑑 𝑥

∞

𝑥
∞
≤ 𝑥

2
≤ 𝑑 𝑥

∞

Proof



36

❑ By a normed linear space (briefly normed space) is meant a real 
or complex vector space 𝐸 in which every vector 𝑥 is associated 
with a real number 𝑥 , called its absolute value or norm, in such a 
manner that the properties 𝑎′ − (𝑐′) holds. That is, for any 
vectors 𝑥, 𝑦 ⊂ 𝐸 and scalar 𝛼 we have:

i. 𝑥 ≥ 0

ii. 𝑥 = 0 𝑖𝑖𝑓 𝑥 = 0

iii. 𝛼𝑥 = 𝛼 𝑥

iv. 𝑥 + 𝑦 ≤ 𝑥 + |𝑦|

Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Inner product and norm
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Examples

Every inner product gives rise to a norm, but not every norm comes 
from an inner product. (Think about norm 2 and norm max)

Solution

Take any inner product ∙,∙ and define 𝑓 𝑥 = 𝑥, 𝑥 . Then 𝑓 is a norm.

Proof
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Entry-wise matrix norms
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Special Cases
❑ Frobenius (Euclidian, Hilbert Schmidt) norm:(p = 2)

𝐴 𝐹 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗
2

1
2

= 𝑡𝑟𝑎𝑐𝑒(𝐴∗𝐴)

❑ Max norm (𝑝 = ∞)
𝐴 𝑚𝑎𝑥 = max

𝑖𝑗
𝑎𝑖𝑗

❑ Sum-absolute-value norm

𝐴 𝑠𝑎𝑣 =෍

𝑖,𝑗

𝐴𝑖,𝑗

Definition

𝐴 𝑝,𝑝 = 𝑣𝑒𝑐 𝐴 𝑝 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗
𝑝

1
𝑝
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Frobenius (Euclidian, Hilbert Schmidt) norm
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Theorem

❑Invariant under rotations (unitary operations = orthogonal 
matrices)

𝐴 𝐹 = 𝐴𝑈 𝐹 = 𝑈𝐴 𝐹

𝐴 + 𝐵 𝐹
2 = 𝐴 𝐹

2 + 𝐵 𝐹
2 + 2 𝐴, 𝐵

𝐴∗𝐴 𝐹 = 𝐴𝐴∗ 𝐹 ≤ 𝐴 𝐹
2

𝐴 𝐹 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗
2

1
2

= 𝑡𝑟𝑎𝑐𝑒(𝐴∗𝐴)
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Frobenius (Euclidian norm)
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Theorem
Let 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 denote the columns of 𝐵. Then

𝐴𝐵 𝐻𝑆
2 =෍

𝑖=1

𝑛

𝐴𝑏𝑖
2 ≤ ෍

𝑖=1

𝑛

𝐴 2 𝑏𝑖
2 = 𝐴 2 𝐵 𝐻𝑆

2

Using Cauchy-Schawrtz Inequality
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Matrix norms induced by vector norms
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Definition

𝐴 𝑝 = max
Ԧ𝑥≠0

𝐴 Ԧ𝑥 𝑝

Ԧ𝑥 𝑝
= max

Ԧ𝑥 𝑝=1
𝐴 Ԧ𝑥 𝑝

Theorem

1. 𝐴𝑥 ≤ 𝐴 𝑥 for all vectors 𝑥

2. For all matrices 𝐴, 𝐵: 𝐴𝐵 ≤ 𝐴 𝐵
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Matrix norms induced by vector norms

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition
❑ The norm of a matrix is a real number which is a measure of the magnitude of the 

matrix.
❑ Norm 1:

𝐴 1 = max
1≤𝑗≤𝑛

෍

𝑖=1

𝑛

𝑎𝑖𝑗

❑ Norm max:

𝐴 ∞ = max
1≤𝑖≤𝑛

෍

𝑗=1

𝑛

𝑎𝑖𝑗

Example

𝐵 =
5 −4 2
−1 2 3
−2 1 0
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❑ One common definition for the norm of a matrix is the Frobenius
norm:

𝐴 𝐹
2 = ෍

𝑖=1:𝑚

෍

𝑗=1:𝑛

𝑎𝑖𝑗
2

❑ Frobenius norm can be computed from SVD

𝐴 F
2 = ෍

𝑖=1:𝑝

σ𝑖
2 𝑤ℎ𝑒𝑟𝑒 𝑝 = min(𝑛,𝑚)

❑ So changes to a matrix can be evaluated by looking at changes to 
singular values

SVD and Norm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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SVD and Norm
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Theorem

1) Orthogonal matrices, they preserve the Euclidean norm

2)
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Norms Compare
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❑ Linear Algebra and Its Applications, David C. Lay
❑ Introduction to Applied Linear Algebra Vectors, Matrices, and 

Least Squares
❑ https://www.youtube.com/watch?v=76B5cMEZA4Y

References
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